A Linear Relaxation Method for Computing Workspace Slices of the Stewart Platform

نویسندگان

  • Oriol Bohigas
  • Montserrat Manubens
چکیده

The workspace of a Stewart platform is a complex sixdimensional volume embedded in the Cartesian space defined by six pose parameters. Because of its large dimension and complex shape, this volume is difficult to compute and represent, and comprehension on its structure is being gained by studying its three-dimensional slices. While successful methods have been given to determine the constantorientation slice, the computation and appropriate visualization of the constant-position slice (also known as the orientation workspace) has proved to be a challenging task. This paper presents a unified method for computing both of such slices, and any other ones defined by fixing three pose parameters, on general Stewart platforms possibly involving mechanical limits on the active and passive joints. Advantages over existing methods include, in addition to the previous, the ability to determine all connected components of the workspace, and any motion barriers present in its interior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Wrench Feasible Workspace Analysis of a Cable Suspended Robot for Heavy Loads Handling

Modeling and Wrench feasible workspace analysis of a spatial cable suspended robots is presented. A six-cable spatial cable robot is used the same as Stewart robots. Due to slow motion of the robot we suppose the motion as pseudostatic and kinetostatic modeling is performed. Various workspaces are defined and the results of simulation are presented on the basis of various workspaces and app...

متن کامل

A Unified Method for Computing Position and Orientation Workspaces of General Stewart Platforms

The workspace of a Stewart platform is a complex sixdimensional volume embedded in the Cartesian space defined by six pose parameters. Because of its large dimension and complex shape, such workspace is difficult to compute and represent, so that comprehension on its structure is being gained by studying its three-dimensional slices. While successful methods have been given to determine the con...

متن کامل

Workspace Analysis of a New Parallel Manipulator

This paper studies the workspace of a six-DC)F parallel manipulator of three-PPSR (prismatic-prismaticspheric-revolute) type. It is well recognized that the most significant drawback of parallel manipulators is their limited workspace. To develop new parallel mechanisms with a larger workspace is of interest to additional applications. The mechanism of the three-PPSR manipulator and its variati...

متن کامل

Workspace Boundary Avoidance in Robot Teaching by Demonstration Using Fuzzy Impedance Control

The present paper investigates an intuitive way of robot path planning, called robot teaching by demonstration. In this method, an operator holds the robot end-effector and moves it through a number of positions and orientations in order to teach it a desired task. The presented control architecture applies impedance control in such a way that the end-effector follows the operator’s hand with d...

متن کامل

Singularity Representation and Workspace Determination of a Special Class of the Gough-Stewart Platforms

The closed-loop nature of the Gough-Stewart platform generates complex singular configurations inside the workspace and makes its workspace smaller compared to the serial mechanism. It is desirable to obtain a non-singular workspace based on describing the constraint workspace and representing the singularities inside the constraint workspace. Some algorithms have been proposed by researchers t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012